Ventricular Electrical Dyssynchrony as a Predictor of Heart Failure
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Abstract

Heart failure (HF) is a growing global health concern,
increasingly affecting younger populations. While several
clinical criteria exist for HF diagnostic, a reliable elec-
trocardiographic (ECG) marker for early HF prediction is
still lacking.

In this study, we introduce ventricular electrical dyssyn-
chrony (VED)—a measure of interventricular conduction
delay derived from precordial ECG leads—as a poten-
tial predictor of HF. Leveraging data from the MIMIC-
1V clinical and ECG database (19,974 subjects, includ-
ing 2,180 who developed HF based on ICD9/10 coding),
we assessed the association between VED and future HF
events using multivariate Cox regression. VED was cate-
gorized into three groups: Low VED (=20 to 15 ms), High-
Negative VED (<-20 ms), and High-Positive VED (>15
ms). Compared to the Low VED group, the High-Negative
VED group showed a hazard ratio (HR) of 1.55 (95% CI:
1.21-1.97, p <0.001), and the High-Positive VED group
had an HR of 1.94 (95% CI: 1.49-2.52, p <0.001), after
adjusting for age, sex, and QRS duration.

These findings highlight VED as a promising ECG-
based marker that could enhance early risk stratification
for heart failure; however, further validation incorporat-
ing standard clinical HF markers is necessary to confirm
its diagnostic utility.

1. Introduction

Heart failure (HF) has been described as an emerging
epidemic, with the number of affected individuals contin-
uing to rise. This trend is driven not only by an aging pop-
ulation but also by an increasing rate of obesity. While
incidence has stabilized in some groups, HF is becoming
more common in younger adults. At the same time, there
is a growing proportion of patients with heart failure with
preserved ejection fraction (HFpEF), a form that is often
more difficult to detect and manage [1].

Several clinical and research criteria have been proposed
for diagnosing HF, each with its own advantages and limi-
tations. These include clinical signs and symptoms (which
often lack sensitivity), echocardiographic measures (which
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can be subject to high variability), natriuretic peptide lev-
els (NTproBNP) (which may be normal in many patients
with HFpEF), or chest X-rays [1]. What remains lack-
ing in this field is a reliable electrocardiographic (ECG)
marker for identifying heart failure. Despite being a sim-
ple, noninvasive, and widely used diagnostic tool in car-
diology, the ECG has not become standard in diagnosing
HF. Ventricular electrical dyssynchrony (VED)—a quanti-
tative measure of the delay between right and left ventricu-
lar activation—has been shown to predict heart failure and
all-cause mortality in patients enrolled in the MADIT-CRT
trial, and to identify individuals who may benefit from car-
diac resynchronization therapy [2]. We hypothesize that
ventricular conduction abnormalities may precede the clin-
ical manifestation of heart failure. In this study, we intro-
duce a VED metric, derived from precordial ECG leads
(V1-V6) using a deep neural network, as an early predictor
of heart failure, utilizing data from the MIMIC-IV clinical
database.

2. Dataset

In this study, we utilized the MIMIC-IV Clinical
Database [3, 4] and the MIMIC-IV-ECG database [5],
along with the MIMIC-IV-ECG-Ext-ICD database, which
links the clinical and ECG databases [6]. These databases
contain data recorded between 2008 and 2022. MIMIC-IV
is derived from two in-hospital database systems: a custom
hospital-wide electronic health record (EHR) system and
an intensive care unit (ICU) database. If a patient appears
in the MIMIC-IV Clinical Database, all available ECG
waveforms from that patient were retrieved and stored in
the MIMIC-IV-ECG database. This dataset includes ECGs
recorded between 2008 and 2022 from various hospital
settings, including the emergency department, inpatient
wards (including the ICU), and outpatient care centers at
Beth Israel Deaconess Medical Center (BIDMC).

The databases are linked through study and subject IDs,
enabling ECGs to be matched with corresponding hospital
admissions. The MIMIC-IV databases also contain ICD-
9/10 diagnostic codes assigned to each hospital stay, rep-
resenting diagnoses determined by trained professionals
based on a review of signed patient notes.
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For this study, we focused on ECGs from patients who
had never been diagnosed with heart failure (HF) and ex-
cluded all subjects with any prior HF-related admissions
based on ICD-9/10 codes. In addition to diagnostic codes,
we extracted demographic information, including patient
age at the time of ECG recording and sex. All ECGs in
the dataset are 10 seconds long, sampled at 500 Hz. Since
a single subject could have multiple ECGs, and survival
analysis assumes independent observations, we selected
only the first ECG recorded for each subject.

The primary objective of this study was to predict HF-
related hospital admission in individuals with no prior his-
tory of HF. We defined two subject groups: (1) those
who remained HF-free throughout the study period and
(2) those who were later diagnosed with HF, as identi-
fied by ICD codes. HF diagnoses were extracted based
on ICD-10 codes beginning with “"I50” (e.g., 1500, I501)
and ICD-9 codes beginning with ”428”. For survival anal-
ysis, we measured time-to-event for outcomes: for the
no-HF group, we recorded the time from the ECG to the
subject’s last documented appearance in the database (any
type of hospital admission), and for the future-HF group,
we recorded the time from the ECG to their first HF-related
hospital admission (mean follow-up time 4.6 + 3.6 years).
We excluded subjects who died during the study period be-
fore developing HF.

In total, the study included 19,964 subjects, each con-
tributing a single ECG, 49% being male and having a mean
age of 57.6 = 16.6 years. Of these, 2,180 people developed
HF by the end of the study. The study included a 12-year
follow-up period.

Additionally, MIMIC-IV contains supplementary ta-
bles, such as chartevent s, which records bedside mon-
itor data. When available, we extracted body mass index
(BMI), as obesity is significant HF-related comorbidity.
The BMI subanalysis included 3,637 subjects, with 449
later diagnosed with HF.

3. Method

In this study, we initially trained a deep neural network
to estimate VED from ultra-high-frequency ECG data, as
the MIMIC-IV database does not support the standard
UHF-ECG processing required for direct VED computa-
tion. We then applied the trained model to MIMIC-IV data
and performed multivariate Cox regression to assess the
association between VED and survival outcomes, focusing
on heart failure prediction.

3.1. Computation of Ventricular Electrical
Dyssynchrony

Ultra-high-frequency ECG (UHF-ECG) is a technique
that enables more precise identification of the temporal-

spatial distribution of ventricular electrical depolarization
and the assessment of ventricular electrical dyssynchrony
(VED) [7]. By comparing depolarization activation pat-
terns across different ventricular segments (leads) and
computing interlead depolarization delay, ventricular elec-
trical dyssynchrony can be quaintified in milliseconds.

The process of computing ventricular electrical dyssyn-
chrony begins with analyzing ECG signals at high sam-
pling frequencies—5 kHz in the original method de-
sign—followed by the detection of QRS complexes, which
are then categorized based on their morphology. This ap-
proach primarily focuses on the dominant QRS morphol-
ogy, meaning that only QRS complexes from the major
morphological group are utilized in further analysis. Next,
the Fourier and Hilbert transforms are applied to compute
16 amplitude envelopes across the 150-1000 Hz frequency
range. These amplitude envelopes are then averaged with
an R-wave trigger and smoothed using a 0—40 Hz pass-
band filter (UHFQRS). The VED parameter is defined by
the maximum time differences in the positions of centers of
gravity within these envelopes, specifically between leads
V1and V6 [2,7]. This computed VED serves as the ground
truth for training a neural network on high-frequency ECG
that has been downsampled to a standard diagnostic sam-
pling rate (500 Hz).

3.2. Deep Learning Model

Although UHF-ECG provides valuable information
about ventricular dyssynchrony, high frequency compo-
nents are not available in standard clinical settings, where
ECGs are typically recorded at 500 Hz. To bridge this gap,
we developed DyssynchronyNet [8], a neural network de-
signed to predict UHF-ECG-derived VED from conven-
tional 500 Hz ECG recordings.

The model was trained on UHF-ECG recordings down-
sampled from 5 kHz to 500 Hz. The preprocessing steps
included downsampling, signal differentiation, and z-score
normalization. The input to the network consisted of six
precordial leads (V1-V6), formatted as a 6 x 5,000 matrix
representing a 10-second segment sampled at 500 Hz.

The data used to develop DyssynchronyNet was pro-
vided by VDI Technologies and included three distinct
sources of private data. DyssynchronyNet was trained and
validated using 3,857 recordings from one medical center
and 2,507 recordings from a second medical center. The
final model was evaluated on an independent test set con-
sisting of 583 recordings from a third independent medical
center. All recordings across these datasets were sampled
at a frequency of 5 kHz. Since the original ECG recordings
had an average duration of 2 minutes, during training, we
randomly selected five 10-second segments per recording
in each epoch to improve robustness.

DyssynchronyNet is a deep convolutional neural net-
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work with stacked convolutional layers using batch nor-
malization and ReLU activation. Max pooling enables hi-
erarchical feature extraction, culminating in global max
pooling and fully connected layers that produces VED.
Dropout is used to improve generalization and reduce over-
fitting.

To validate the model’s ability to predict VED before
transitioning to the MIMIC-IV dataset, we evaluated its
performance on the independent test set, obtaining a mean
absolute error (MAE) of 13.71 = 12.05 ms.

3.3. Application to MIMIC-IV and Sur-
vival Analysis

After training the model on ultra-high-frequency ECG
data, we applied DyssynchronyNet to ECG recordings
from the MIMIC-IV database to estimate VED values.

To evaluate the clinical significance of VED, we per-
formed a multivariate Cox regression analysis to assess its
impact on HF prediction.

The Cox proportional hazards regression model is given
by: h(t | X) = ho(t) exp (81 X1 + B2 Xo + ... + /Bpo)

where h(t | X) is the hazard function at time ¢, ho(t) is
the baseline hazard, and 31, B2, ..., (B, are the regression
coefficients. The computed risk is represented by the linear
predictor: ) = 51X 1+ B2 Xo+. . .45, X, which estimates
the likelihood of an event occurring.

The input variables for Cox regression included VED,
along with QRS duration (QRSd) to compare its predictive
performance to VED. Additional covariates included age
and sex (Male = 1, Female = 0). Age was standardized us-
ing z-score normalization, and both VED and QRSd were
categorized. VED was divided into three groups: Low-
VED (-20 to 15 ms), High-negative-VED (<-20 ms), and
High-positive-VED (>15 ms). Histogram of VED for our
subset of MIMIC-IV ECGs and its categorization could be
observed in Figure 1. Similarly, QRSd was categorized as
Low QRSd (0-100 ms), Medium QRSd (100-130 ms), and
High QRSd (>130 ms).

Given that obesity is a recognized comorbidity and risk
factor for heart failure (HF), we conducted an additional
Cox regression sub-analysis on subjects with available
BMI data. BMI was treated as a continuous variable and
standardized using z-score.

4. Results

The results of the multivariate Cox regression are pre-
sented in Table 1. The corresponding Kaplan-Meier curve,
stratified by VED categories, is shown in Figure 2. We also
compared two Cox regression models: one using only co-
variates for heart failure prediction (Age, Sex, and QRSd)
and another incorporating VED along with these covari-
ates. The Akaike Information Criterion (AIC), which eval-
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Figure 1. A distribution the predicted values of ven-
tricular electrical dyssynchrony (VED) in the MIMIC-IV
database. The colors indicate three VED categories: Low-
VED (green), High-negative-VED (orange), and High-
positive-VED (red).

uates model fit while penalizing complexity, yielded values
of 35,298 and 35,276, respectively, indicating an improve-
ment in the model when VED was included.

Next, we conducted a subanalysis including BMI as a
covariate for a subset of subjects, as shown in Table 2.
Comparing the AIC values of the model using only co-
variates (Age, Sex, QRSd, and BMI) versus the one incor-
porating VED, we observed a decrease in AIC from 4,768
to 4,761, further suggesting an improvement in model per-
formance.

Table 1. Results of Cox-regression.

Covariate Hazard ratio p-value
VED <-20 ms 1.55(1.21-1.97) p<0.001
VED >15 ms 1.94 (1.49 - 2.52) p<0.0001
QRSd (100-130] ms  1.38 (1.24-1.53) p<0.0001
QRSd >130 ms 1.40(1.15-1.70) p<0.0001
Age 2.09(1.98-2.21) p<0.001
Sex 1.06 (0.97 - 1.16) p=0.21

Table 2. Results of Cox-regression including BMI.

Covariate Hazard ratio p-value
VED <-20 ms 1.89(1.19-3.02) p<0.01
VED >15 ms 2.33(1.31-4.14)  p<0.01
QRSd Low-Medium  1.51(1.2-1.91) p<0.001
QRSd Low-High 1.24 (0.84 - 1.83) p=0.23
Age 1.90 (1.66 - 2.18)  p<0.001
Sex 0.79 (0.64-097) p=0.03
BMI 1.20 (1.08 - 1.33)  p<0.001
S. Discussion and Conclusion

The results of the multivariate Cox regression analy-
sis highlight the significant predictive value of VED as
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Figure 2. Cumulative incidence curve for heart failure
prediction stratified by three categories of ventricular elec-
trical dyssynchrony (VED). The curve colors represent the
VED groups: Low VED (green), High-negative VED (or-
ange), and High-positive VED (red).

a covariate for heart failure risk. In the main analysis,
the hazard ratios for the VED categories — high negative
(1.55, p<0.001) and high positive (1.94, p<0.0001) —
indicate a strong association with heart failure outcomes.
Additionally, the subanalysis including BMI showed haz-
ard ratios of 1.89 (p<0.01) for high negative and 2.33
(p<0.01) for high positive VED, further reinforcing this
link. These findings suggest that delays in ventricular de-
polarization may contribute significantly to the develop-
ment of heart failure. Consequently, VED shows promise
as a novel biomarker for heart failure, complementing tra-
ditional clinical covariates.

When comparing the inclusion of VED to other covari-
ates, the results, particularly in terms of AIC, underscore
the added value of incorporating VED into the model.

While our study shows that VED can serve as an ef-
fective predictor of heart failure risk, several limitations
must be acknowledged. First, the analysis relies solely on
ICD codes without the support of a longitudinal follow-up.
Additionally, our dataset lacks important clinical indica-
tors such as the NYHA classification, laboratory findings,
and key diagnostic parameters like ejection fraction and
NT-proBNP levels, which are commonly used to evaluate
and confirm heart failure. Although NT-proBNP data were
available for a subset of patients, the data were too sparse
and did not yield statistically significant results; therefore,
NT-proBNP was not included as a variable in our analysis.

Despite these limitations, the findings of this study pro-
vide a strong foundation for future research on ventricular
electrical dyssynchrony as a precursor of heart failure, with
the potential to improve clinical risk stratification.
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